Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers
نویسندگان
چکیده
Cubosomes are micro- and nanoparticles with a bicontinuous cubic two-phase structure, reported for the self-assembly of low molecular weight surfactants, for example, lipids, but rarely formed by polymers. These objects are characterized by a maximum continuous interface and high interface to volume ratio, which makes them promising candidates for efficient adsorbents and host-guest applications. Here we demonstrate self-assembly to nanoscale cuboidal particles with a bicontinuous cubic structure by amphiphilic poly(ionic liquid) diblock copolymers, poly(acrylic acid)-block-poly(4-vinylbenzyl)-3-butyl imidazolium bis(trifluoromethylsulfonyl)imide, in a mixture of tetrahydrofuran and water under optimized conditions. Structure determining parameters include polymer composition and concentration, temperature, and the variation of the solvent mixture. The formation of the cubosomes can be explained by the hierarchical interactions of the constituent components. The lattice structure of the block copolymers can be transferred to the shape of the particle as it is common for atomic and molecular faceted crystals.
منابع مشابه
Self-Organization on Multiple Length Scales in "Hairy Rod"-Coil Block Copolymer Supramolecular Complexes
The last two decades have seen an explosion of research activity in the area of self-assembled polymeric and supramolecular materials. Self-assembly schemes rely on an often delicate balance between competing repulsive and attractive forces between structural elements. In traditional coil-coil block copolymers, microphase separated structures are dictated by the balance of immiscibility between...
متن کاملNovel RAFT amphiphilic brush copolymer steric stabilisers for cubosomes: poly(octadecyl acrylate)-block-poly(polyethylene glycol methyl ether acrylate).
Copolymers, particularly Pluronics®, are typically used to sterically stabilise colloidal nanostructured particles composed of a lyotropic liquid crystalline bicontinuous cubic phase (cubosomes). There is a need to design and assess new functionalisable stabilisers for these colloidal drug delivery systems. Six amphiphilic brush copolymers, poly(octadecyl acrylate)-block-poly(polyethylene glyco...
متن کاملAmphiphilic brush polymers produced using the RAFT polymerisation method stabilise and reduce the cell cytotoxicity of lipid lyotropic liquid crystalline nanoparticles.
Self-assembled lipid lyotropic liquid crystalline nanoparticles such as hexosomes and cubosomes contain internal anisotropic and isotropic nanostructures, respectively. Despite the remarkable potential of such nanoparticles in various biomedical applications, the stabilisers used in formulating the nanoparticles are often limited to commercially available polymers such as the Pluronic block cop...
متن کاملSelf-Assembly of Block and Graft Copolymers in Organic Solvents: An Overview of Recent Advances
This review is an attempt to update the recent advances in the self-assembly of amphiphilic block and graft copolymers. Their micellization behavior is highlighted for linear AB, ABC triblock terpolymers, and graft structures in non-aqueous selective polar and non-polar solvents, including solvent mixtures and ionic liquids. The micellar characteristics, such as particle size, aggregation numbe...
متن کاملA Record Nine Different Phases (Four Cubic, Two Hexagonal, and One Lamellar Lyotropic Liquid Crystalline and Two Micellar Solutions) in a Ternary Isothermal System of an Amphiphilic Block Copolymer and Selective Solvents (Water and Oil)
We report on a ternary isothermal system consisting of a poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) amphiphilic block copolymer, “water”, and “oil” (where “water” and “oil” are selective solvents for the different blocks), which exhibits the richest structural polymorphism ever observed (in equilibrium) inmixtures containing amphiphiles (such as block copolymers, surfactants, or lipid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017